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Overview

• Vague expressions (most, small) ubiquitous in language

• Single but non-specified meaning: Context dependence
• Real-world contexts are multimodal, e.g. Language + Vision
• Can they be learned from use in grounded (visual) contexts?
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Quantifiers



Quantity expressions

Numbers
Three dogs

Comparatives
More dogs than cats

Proportions
60% of pets are dogs

Quantifiers
Some pets are dogs
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Quantity expressions: Precise vs fuzzy

Numbers
Three/two dogs

Comparatives
More/less dogs than cats

Proportions
60%/50% of pets are dogs

Quantifiers
Some/all pets are dogs
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Quantity expressions: Precise vs fuzzy

Numbers
Three/two dogs

Comparatives
More/less dogs than cats

Proportions
60%/50% of pets are dogs

Quantifiers
Some/all pets are dogs

some ∼ a few ∼ several ∼ most
pets are dogs
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Computational study

Questions
Can the meaning of quantifiers be learned from vision?

Can a single model jointly learn quantifiers, comparatives, and
proportions?

Pezzelle, Sorodoc, Bernardi. NAACL-HLT, 2018
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Motivation

Comparatives, quantifiers, proportions:

• describe (increasingly-complex) relations between sets

• subtend different operation compared to numbers
[Fabbri et al., 2012]
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Dataset

Comparatives
more

Quantifiers
most 0.43, some 0.29, etc.
(Pezzelle, Bernardi, Piazza. Cognition, 2018)

Proportions
57%

Synthetic: (1) perfect balancing; (2) NO bias; (3) NO world knowledge
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Multi-Task Learning (MTL)
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1a. Does the MTL model learn (quantifiers)?
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1b. Does the MTL model learn (proportions)?
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2a. What does the MTL learn?
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2b. What does the MTL learn?

• Not about number of targets! Counting animals hurts
performance of previous tasks

• Hierarchical ordering of (difficulty of) tasks: Reversing
architecture does not work
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performance of previous tasks
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3. Does it generalize to unseen combinations?
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Gradable Adjectives



Adjectives: Gradable vs Non-gradable

Non-gradable
The open car

the green car

Gradable
The old/older/oldest car

The small/smaller/smallest car
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Non-gradable
The open car

the green car

Gradable
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The small/smaller/smallest car
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GAs: A function over a set of comparison

Tall/short use dependent on height of comparison set

Barner & Snedeker, 2008, Child Development
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GAs: A function over a set of comparison

Entity short in one context can be tall in another one

Barner & Snedeker, 2008, Child Development
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Computational study (ongoing)

Question

Can a multimodal model learn to use positive GAs (i.e. big/small) in
a given visual context?

Pezzelle, Fernández, in preparation, 2019
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Motivation

Size GAs:

• represent functions that map objects onto scales of degrees
[Cresswell, 1976, Kennedy, 2013]

• subtend a statistical operation over a comparison set
[Barner and Snedeker, 2008, Schmidt et al., 2009]

• learned through their use in grounded contexts, i.e. vision
[Schmidt et al., 2009]
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1. Do models learn vague GAs?

Battery of tasks to evaluate model abilities:

• (A) Superlative GAs (biggest/smallest) –> measurement/sorting
• (B) Positive GAs in same-shape scenes –> threshold
• (C) Positive GAs in different-shape scenes –> threshold
• (D) Positive GAs in same-shape sets –> comparison set
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3. Do models generalize?

Battery of experiments to test generalization:

• train on scene-level tasks, test on comparison set-level ones
• train on mixed-task datasets: Some shapes in train, different
shapes in test

• train on mixed-abilities cases, test on single-ability ones
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Expected results

We expect models to:

• fail in almost all tasks (baseline)

• being able to easily solve the easier tasks, make errors in harder
ones (SoA models)

• show some generalization abilities (i.e. shortcuts)
• error patterns in line with difficulty of cases (i.e. distance from
threshold)
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Few/many/big/small questions?
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