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The appropriateness of neural models

I “Modern approaches [. . . ] do not explicitly formulate
and execute compositional paths” (Johnson et al., 2017)

I “Neural network models lack the abiltiy to extract
systematic rules” (Lake and Baroni, 2018)

I “They do not learn in a compositional way” (Lǐska et al.,
2018)

I “[. . . ] neural networks are essentially very large
correlation engines that hone in on any statisctical,
potentially spurious pattern” (Hudson and Manning,
2018)

I Neural networks are data-hungry because they don’t
develop re-usable representations (almost everyone)
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2018)

I “[. . . ] neural networks are essentially very large
correlation engines that hone in on any statisctical,
potentially spurious pattern” (Hudson and Manning,
2018)

I Neural networks are data-hungry because they don’t
develop re-usable representations (almost everyone)



Testing
compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

References

The appropriateness of neural models

I “Modern approaches [. . . ] do not explicitly formulate
and execute compositional paths” (Johnson et al., 2017)

I “Neural network models lack the abiltiy to extract
systematic rules” (Lake and Baroni, 2018)

I “They do not learn in a compositional way” (Lǐska et al.,
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What is compositionality

The principle of compositionality

The meaning of a whole is a function of the meanings of the
parts and of the way they are syntactically combined.

Partee (1995)
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What is compositionality
What does it mean that neural networks are not compositional?

I They find different parts than we’d like them to
I They find different rules than we’d like them to
I They find other aspects of the data more salient
I They cannot represent hierarchy
I They favour memorising sequences over learning rules
I They are not getting the right signal from the data
I . . .
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The appropriateness of neural models

Our approach: “dissect” compositionality:
I Do models find the right parts and rules?

I Do models use the parts and rules they finds
systematically

I Do models use the parts and rules they finds
productively

I Do models compute locally consistent representations?
I Do models allow substitution of synonyms?
I Do models prefer rules or exceptions?
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Data
PCFG SET

Unary functions: reverse, swap, copy, . . .
Binary functions: prepend, append, remove first, . . .
Characters: A, B, C, . . .
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reverse A B C
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Data
PCFG SET

Unary functions: reverse, swap, copy, . . .
Binary functions: prepend, append, remove first, . . .
Characters: A, B, C, . . .

reverse A B C ⇒ C B A



Testing
compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

References

Data
PCFG SET

Unary functions: reverse, swap, copy, . . .
Binary functions: prepend, append, remove first, . . .
Characters: A, B, C, . . .

reverse A B C ⇒ C B A
append C B A , D E
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Data
PCFG SET

Unary functions: reverse, swap, copy, . . .
Binary functions: prepend, append, remove first, . . .
Characters: A, B, C, . . .

reverse A B C ⇒ C B A
append C B A , D E ⇒ C B A D E

append reverse A B C , copy D E ⇒ C B A D E



Testing
compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

References

Data
PCFG SET

Unary functions: reverse, swap, copy, . . .
Binary functions: prepend, append, remove first, . . .
Characters: A, B, C, . . .

append reverse A B C , copy D E ⇒ C B A D E

append

reverse A B C copy D E
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PCFG SET
Data Naturalisation

(a) PCFG SET (b) WMT 2017

Figure: Distribution of sentence depth and length in the PCFG SET
and WMT2017 data.



Testing
compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

References

Models

1. LSTMS2S Recurrent encoder-decoder model with
attention

2. ConvS2S Convolutional encoder and decoder with
multistep attention

3. Transformer Fully attention based model
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Results

Experiment LSTMS2S ConvS2S Transformer

PCFG SET∗ 0.77 ± 0.01 0.84 ± 0.01 0.93 ± 0.01
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Systematicity

Can models systematically recombine unseen pairs of
functions?
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Results
Systematicity

Experiment LSTMS2S ConvS2S Transformer

PCFG SET∗ 0.77 ± 0.01 0.84 ± 0.01 0.93 ± 0.01
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Localism

Figure: Localism

Do models build representations incrementally?

append reverse A B C , copy D E

≡ ?
append C B A , D E
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Experiment LSTMS2S ConvS2S Transformer

PCFG SET∗ 0.77 ± 0.01 0.84 ± 0.01 0.93 ± 0.01

Systematicity∗ 0.51 ± 0.03 0.55 ± 0.01 0.70 ± 0.01
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Results
Generality of representations
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Overgeneralisation

Do models overgeneralise during training?
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Results

Experiment LSTMS2S ConvS2S Transformer

PCFG SET∗ 0.77 ± 0.01 0.84 ± 0.01 0.93 ± 0.01

Systematicity∗ 0.51 ± 0.03 0.55 ± 0.01 0.70 ± 0.01

Localism† 0.45 ± 0.01 0.57 ± 0.04 0.56 ± 0.03

Overgeneralisation∗ 0.73 ± 0.18 0.78 ± 0.12 0.84 ± 0.02
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Overgeneralisation profile
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Overgeneralisation
Different exception rates

Overgeneralisation profiles for exceptions occuring 0.01%,
0.05%, 0.1% and 0.5%

(a) LSTM2S (b) Conv2S (c) Transformer
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