The compositionality of neural networks: integrating symbolism and connectionism

Dieuwke Hupkes

Institute for Logic, Language and Computation University of Amsterdam

May 6, 2019

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

 "Modern approaches [...] do not explicitly formulate and execute compositional paths" (Johnson et al., 2017) Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

- "Modern approaches [...] do not explicitly formulate and execute compositional paths" (Johnson et al., 2017)
- "Neural network models lack the ability to extract systematic rules" (Lake and Baroni, 2018)

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

- "Modern approaches [...] do not explicitly formulate and execute compositional paths" (Johnson et al., 2017)
- "Neural network models lack the ability to extract systematic rules" (Lake and Baroni, 2018)
- "They do not learn in a compositional way" (Liška et al., 2018)

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

- "Modern approaches [...] do not explicitly formulate and execute compositional paths" (Johnson et al., 2017)
- "Neural network models lack the ability to extract systematic rules" (Lake and Baroni, 2018)
- "They do not learn in a compositional way" (Liška et al., 2018)
- "[...] neural networks are essentially very large correlation engines that hone in on any statisctical, potentially spurious pattern" (Hudson and Manning, 2018)

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

- "Modern approaches [...] do not explicitly formulate and execute compositional paths" (Johnson et al., 2017)
- "Neural network models lack the ability to extract systematic rules" (Lake and Baroni, 2018)
- "They do not learn in a compositional way" (Liška et al., 2018)
- "[...] neural networks are essentially very large correlation engines that hone in on any statisctical, potentially spurious pattern" (Hudson and Manning, 2018)
- Neural networks are data-hungry because they don't develop re-usable representations (almost everyone)

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

What is compositionality

The principle of compositionality

The meaning of a whole is a function of the meanings of the parts and of the way they are syntactically combined. Partee (1995) Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

What is compositionality

What does it mean that neural networks are not compositional?

- They find different parts than we'd like them to
- They find different rules than we'd like them to
- They find other aspects of the data more salient
- They cannot represent hierarchy
- They favour memorising sequences over learning rules
- They are not getting the right signal from the data

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

Our approach: "dissect" compositionality:

Do models find the right parts and rules?

Our approach: "dissect" compositionality:

- Do models find the right parts and rules?
- Do models use the parts and rules they finds systematically

Dieuwke Hupkes

Compositionality

Data

Models

Results

Our approach: "dissect" compositionality:

- Do models find the right parts and rules?
- Do models use the parts and rules they finds systematically
- Do models use the parts and rules they finds productively

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

Our approach: "dissect" compositionality:

- Do models find the right parts and rules?
- Do models use the parts and rules they finds systematically
- Do models use the parts and rules they finds productively
- Do models compute locally consistent representations?

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

Our approach: "dissect" compositionality:

- Do models find the right parts and rules?
- Do models use the parts and rules they finds systematically
- Do models use the parts and rules they finds productively
- Do models compute locally consistent representations?
- Do models allow substitution of synonyms?

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

Our approach: "dissect" compositionality:

- Do models find the right parts and rules?
- Do models use the parts and rules they finds systematically
- Do models use the parts and rules they finds productively
- Do models compute locally consistent representations?
- Do models allow substitution of synonyms?
- Do models prefer rules or exceptions?

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

The rest of the team

Mathijs Mul

Verna Dankers

Elia Bruni

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

Unary functions: reverse, swap, copy, ... Binary functions: prepend, append, remove_first, ... Characters: A, B, C, ... Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

> Unary functions: reverse, swap, copy, ... Binary functions: prepend, append, remove_first, ... Characters: A, B, C, ...

reverse A B C

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

Unary functions: reverse, swap, copy, ... Binary functions: prepend, append, remove_first, ... Characters: A, B, C, ...

reverse A B C \Rightarrow C B A

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

> Unary functions: reverse, swap, copy, ... Binary functions: prepend, append, remove_first, ... Characters: A, B, C, ...

reverse A B C \Rightarrow C B A append C B A , D E

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

> Unary functions: reverse, swap, copy, ... Binary functions: prepend, append, remove_first, ... Characters: A, B, C, ...

 $\begin{array}{cccc} \mbox{reverse A B C} & \Rightarrow & \mbox{C B A} \\ \mbox{append C B A , D E} & \Rightarrow & \mbox{C B A D E} \end{array}$

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

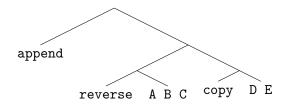
> Unary functions: reverse, swap, copy, ... Binary functions: prepend, append, remove_first, ... Characters: A, B, C, ...

Testing

compositionality

Dieuwke Hupkes

Data


 $\begin{array}{cccc} \text{reverse A B C} & \Rightarrow & \text{C B A} \\ \text{append C B A , D E} & \Rightarrow & \text{C B A D E} \end{array}$

append reverse A B C , copy D E \Rightarrow C B A D E

Unary functions: reverse, swap, copy, ... Binary functions: prepend, append, remove_first, ... Characters: A, B, C, ...

append reverse A B C , copy D E $\ \Rightarrow$ C B A D E

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

PCFG SET

Data Naturalisation

Testing compositionality

Dieuwke Hupkes

Compositionality

Models

Results

References

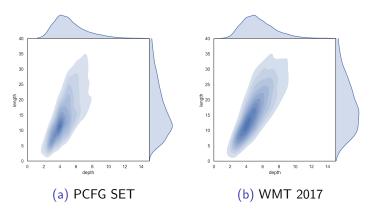


Figure: Distribution of sentence depth and length in the PCFG SET and WMT2017 data.

Models

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

- 1. LSTMS2S Recurrent encoder-decoder model with attention
- 2. **ConvS2S** Convolutional encoder and decoder with multistep attention
- 3. Transformer Fully attention based model

Results

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

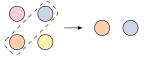
Results

Experiment	LSTMS2S	ConvS2S	Transformer
PCFG SET*	0.77 ± 0.01	0.84 ± 0.01	0.93 ± 0.01

Systematicity

Testing compositionality

Dieuwke Hupkes


Compositionality

Data

Models

Results

References

Can models systematically recombine unseen pairs of functions?

Results Systematicity

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

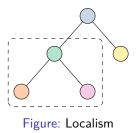
Results

Experiment	LSTMS2S	ConvS2S	Transformer
PCFG SET*	0.77 ± 0.01	$\textbf{0.84} \pm \textbf{0.01}$	$\textbf{0.93} \pm \textbf{0.01}$
Systematicity*	0.51 ± 0.03	0.55 ± 0.01	$\textbf{0.70} \pm \textbf{0.01}$

Localism

Testing compositionality

Dieuwke Hupkes


Compositionality

Data

Models

Results

References

Do models build representations incrementally?

append reverse A B C , copy D E $$\equiv$$ append C B A , D E

Results

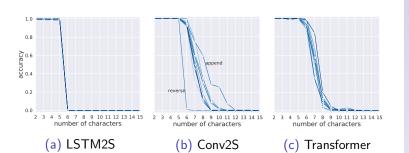
Localism

Testing compositionality

Dieuwke Hupkes

Compositionality

Data


Models

Results

Experiment	LSTMS2S	ConvS2S	Transformer
PCFG SET*	$\textbf{0.77} \pm \textbf{0.01}$	$\textbf{0.84} \pm \textbf{0.01}$	$\textbf{0.93} \pm \textbf{0.01}$
Systematicity*	0.51 ± 0.03	0.55 ± 0.01	0.70 ± 0.01
$Localism^{\dagger}$	$\textbf{0.45}\pm\textbf{0.01}$	0.57 ± 0.04	$\textbf{0.56} \pm \textbf{0.03}$

Results

Generality of representations

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

Overgeneralisation

Do models overgeneralise during training?

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

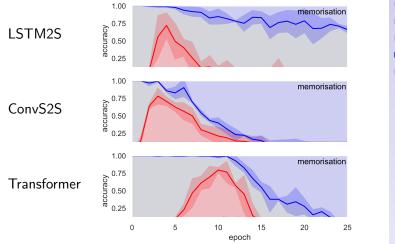
Results

Results

Testing compositionality

Dieuwke Hupkes

Compositionality


Data

Models

Results

Experiment	LSTMS2S	ConvS2S	Transformer
PCFG SET*	$\textbf{0.77} \pm \textbf{0.01}$	$\textbf{0.84} \pm \textbf{0.01}$	$\textbf{0.93} \pm \textbf{0.01}$
Systematicity*	0.51 ± 0.03	0.55 ± 0.01	0.70 ± 0.01
$Localism^{\dagger}$	$\textbf{0.45} \pm \textbf{0.01}$	0.57 ± 0.04	0.56 ± 0.03
Overgeneralisation*	$\textbf{0.73} \pm \textbf{0.18}$	0.78 ± 0.12	$\textbf{0.84}\pm\textbf{0.02}$

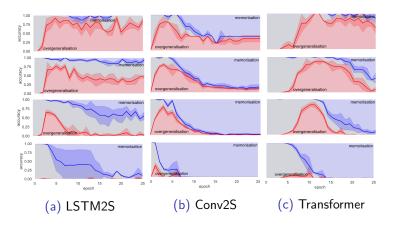
Overgeneralisation profile

Testing compositionality

Dieuwke Hupkes

Compositionality

Data


Models

Results

Overgeneralisation

Different exception rates

Overgeneralisation profiles for exceptions occuring 0.01%, 0.05%, 0.1% and 0.5%

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results

The rest of the team

Mathijs Mul

Verna Dankers

Elia Bruni

compositionality Dieuwke Hupkes

Compositionality

Testing

Data

Models

Results

References

- Drew A. Hudson and Christopher D. Manning. Compositional attention networks for machine reasoning. In *Proceedings of the International Conference on Learning Representations (ICLR)*, 2018.
- Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and Ross Girshick. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. In *Computer Vision and Pattern Recognition (CVPR)*, pages 1988–1997. IEEE, 2017.
- Brenden M. Lake and Marco Baroni. Still not systematic after all these years: On the compositional skills of sequence-to-sequence recurrent networks. In *ICLR 2018 workshop track*, 2018.
- Adam Liška, Germán Kruszewski, and Marco Baroni. Memorize or generalize? searching for a compositional rnn in a haystack. In *ICML* workshop Architectures and Evaluation for Generality, Autonomy and Progress in AI (AEGAP), 2018.
- Barbara Partee. Lexical semantics and compositionality. *An invitation to cognitive science: Language*, 1:311–360, 1995.
- Zoltán Gendler Szabó. Compositionality as supervenience. *Linguistics and Philosophy*, 23(5):475–505, 2000.

Testing compositionality

Dieuwke Hupkes

Compositionality

Data

Models

Results