Correlating neural and symbolic representations of language

Grzegorz Chrupała Afra Alishahi

Beyond diagnostic classifiers

- Diagnostic classifiers/regressors
 - non-trivial to apply to structures such as syntax trees
- Workarounds
 - Tree-depth, topmost constituent labels (Conneau & Kiela 2018)
 - Edge probing (Tenney et al. 2019)
- Our solution: RSA + tree kernels

RSA

Kriegeskorte, N., Mur, M., & Bandettini, P. A. (2008). Representational similarity analysis-connecting the branches of systems neuroscience. *Frontiers in systems neuroscience*, 2, 4.

Representational similarity: an example

Utt 1	Utt 2	Sim 1	Sim 2
A slice of pizza	A bowl of salad	7.0	6.2
Two dogs run	A kitty running	8.0	9.0
A yellow and white bird	A kitty running	3.0	4.5

Correlation between similarity 1 and similarity 2

Structured Spaces

- RSA is applicable whenever we can define a similarity/distance metric WITHIN spaces A and B.
- Crucially, no need for a metric
 BETWEEN A and B
- A can be a vector space, while B can be a space of strings/trees/graphs.

Tree Kernels

Collins, M., & Duffy, N. (2002). Convolution kernels for natural language. In Advances in neural information processing systems (pp. 625-632).

Simple synthetic language

- Well understood syntax and semantics
- Possible to fully learn by RNN
- Validate RSA approach

Similar to Hupkes et al (2018).

Arithmetic expressions

((6+2)-(3+7))

Syntax and semantics

SyntaxMeaning $E \rightarrow (E_1 + E_2)$ $[E] = [E_1] + [E_2] \mod 10$ $E \rightarrow (E_1 - E_2)$ $[E] = [E_1] - [E_2] \mod 10$ $E \rightarrow 0$ [E] = 0 \vdots \vdots $E \rightarrow 9$ [E] = 9

Example:

$$((6+2)-(3+7))$$

(8 - 0)

б

Representations and (dis)similarity functions

- This part is confusing
- Semantic

- Expression value | absolute difference
- Syntactic (simple)
 - Expression depth | absolute difference
- Syntactic (full)
 - Expression tree | tree kernel

Neural (LSTM) models

Identical encoder architecture

- Random (untrained)
- Semantic evaluation
 - $(6 (2 + 3)) \rightarrow 1$
- Tree depth

 $(6 - (2 + 3)) \rightarrow 2$

Infix-to-prefix (6-(2+3)) → (-6(+23))

Results

		Diagnostic		RSA		
Encoder	Loss	Value	Depth	Value	Depth	TK
RANDOM		-0.01	0.79	0.01	0.23	-0.39
SEMANTIC EVALUATION	0.07	0.97	0.69	0.62	0.05	-0.01
TREE DEPTH	0.00	-0.01	1.00	0.01	0.72	-0.20
INFIX-TO-PREFIX	0.00	0.01	0.96	-0.00	0.64	0.39

- Need an example here
- Given reference expressions R
- For each expression of interest, embed in vector space by measuring similarities to R
 - Source similarity σ_k cosine in neural represention space
 - Target similarity σ_l e.g. tree kernel
- Predict vectors embedded via σ_l from vectors embedded via σ_k

$$\widehat{\mathbf{B}, \mathbf{a}} = \operatorname*{arg\,min}_{\mathbf{B}, \mathbf{a}} \operatorname{MSE}(\mathbf{B}\sigma_k(X, R) + \mathbf{a}, \sigma_l(X, R))$$

Properties of RSA_{REGRESS}

- Like diagnostic model, focus on prediction, not correlation of complete representation space
- Like RSA, easy access to structured symbolic representations via similarity embedding

Results

	RSA			RSA _{REGRESS}			
Encoder	Value	Depth	TK	Value	Depth	TK	
Random Semantic evalu Tree Depth Infix-to-prefix	0.01 0.62 0.01 -0.00	0.23 0.05 0.72 0.64	-0.39 -0.01 -0.20 0.39	-0.02 0.96 -0.02 0.02	0.56 0.54 0.97 0.88	0.67 0.62 0.82 0.89	

Results on English

- Infersent (Conneau 2017)
 - trained on NLI
- BERT (Devlin et al. 2018)
 - trained on cloze and next-sentence classification
- Random versions of these

Encoder	Train	lpha	RSA	RSA _{regress}
BoW		0.5	0.19	0.44
Infersent	_	0.5	0.23	0.44
BERT last	_	0.5	0.14	0.44
BERT best	_	0.5	0.16	0.47
Infersent	+	0.5	0.27	0.67
BERT last	+	0.5	0.17	0.56
BERT best	+	0.5	0.30	0.66
BoW		1.0	0.01	0.39
Infersent	_	1.0	0.01	0.47
BERT last	_	1.0	-0.05	0.48
BERT best	_	1.0	-0.04	0.50
Infersent	+	1.0	0.09	0.57
BERT last	+	1.0	0.03	0.53
BERT best	+	1.0	0.17	0.59

BERT layers

Paper

openreview.net/forum?id=ryx35Ehi84

Code

coming soon

Algorithm 1 Recursive function for generating an expression of language L.

- 1: **function** GENERATE(p, d)
- 2: branch ~ BERNOULLI(p)
- 3: if branch then
- 4: $E_1 \leftarrow \text{GENERATE}(p/d, d)$
- 5: $E_2 \leftarrow \text{GENERATE}(p/d, d)$
- 6: op ~ UNIFORM([+, -]) 7: return (E_1 op E_2)
- 7: retu 8: else
- 8: else
- 9: digit ~ UNIFORM($[0, \ldots, 9]$)
- 10: **return** digit
- 11: **end if**
- 12: end function

⊳ Rules 3–13

 \triangleright Rules 1–2

d=2.0

d=1.8

d=1.5

