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If connectionism is to be an adequate theory of mind, we must have a theory of representation for neural
networks that allows for individual differences in weighting and architecture while preserving sameness, or
at least similarity, of content. In this paper we propose a procedure for measuring sameness of content of
neural representations. We argue that the correct way to compare neural representations is through analysis
of the distances between neural activations, and we present a method for doing so. We then use the
technique to demonstrate empirically that different artificial neural networks trained by back-propagation
on the same categorisation task, even with different representational encodings of the input patterns
and different numbers of hidden units, reach states in which representations at the hidden units are
similar. We discuss how this work provides a rebuttal to Fodor and Lepore’s critique of Paul Churchland’s

state space semantics.

-AARRE LAAKSO & GARRISON COTTRELL (2000)

http://cseweb.ucsd.edu/~gary/pubs/
Laakso&Cottrell2000.pdf



“... In order to bridge these divides, we suggest abstracting from the activity patterns themselves
and computing representational dissimilarity matrices <RDMS>, which characterise the information
carried by a given representation in a brain or model. Building on a rich psychological and
mathematical literature on similarity analysis, we propose a new experimental and data-analytical
framework called representational similarity analysis (RSA), in which multi-channel measures of
neural activity are quantitatively related to each other and to computational theory and behaviour
by comparing RDMs. We demonstrate RSA by relating representations of visual objects as
measured with fMRI in early visual cortex and the fusiform face area to

29

spanning a wide range of complexities...

—Nikolaus Kriegeskorte,Marieke Mur, and Peter Bandettini (2008)

https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2605405/


https://www.ncbi.nlm.nih.gov/pubmed/?term=Kriegeskorte%20N%5BAuthor%5D&cauthor=true&cauthor_uid=19104670
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mur%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19104670
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bandettini%20P%5BAuthor%5D&cauthor=true&cauthor_uid=19104670

Drawing Connections between

Computational Models and Biological Models

Given a continues language input, 1.e. text of a story:

- How different, are the representations from different models and
what can we learn from that...

- How similar are the representations obtained from the models and
the activity patterns in human brain



Aligning representational spaces

Learn a Transformation function between the two spaces
- We need enough training data
- We need a proper distance metric between for the target representational space

- What does it mean when we can not learn the proper Transformation function?

Compute Representational similarity
- Similarity of similarities/Distances of distances

- We are interested in the organisation of the entities/concepts in the space rather
than the actual activation values of the units

- We assume that we have a fair similarity/distance metric for each of the
representational spaces
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Representational Stability Analysis

How sensitive the representations are to a specific change in the input
condition, e.g. Context Length:

.. witch in the family ...
.. But for my mother and father, oh no, it was Lily this and Lily that, they were proud of having a ...
.. I was the only one who saw her for what she was -- a freak ...

... How could you not be, my dratted sister being what she was ...
... "Knew! Of course we knew! ...

ReSta(model, k) = RSS(model|c|=k, model|c|=k+1)
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Representational Stability Analysis
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Representational Similarity between Different Models
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Representational Stability Analysis (evaluation on WiC)

How sensitive the representations are to a specific change in the input
condition, e.g. Context:

He is about average in height .
The snowfall this month is below average .

In the old days a policeman walked a beat and knew all his people by

name .
A beat of the heart .

ReSt(model, (C,, C,)) = RSS(model —C; modelczcz)
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Representational Similarity between Models and Brains
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Figure 7: Similarity of the representations from different
layers of different models, given different amount of context
with brain representations, averaged over all subjects. Note

that the average RSS of brains of different human subjects is
about 0.55
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(a) Context Sensitivity (RSA(Ly_ci, Lr_ci11))
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Representational Similarity between Models and Brains
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Representational Similarity between Models and Brains




