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-AARRE LAAKSO & GARRISON COTTRELL (2000)

If connectionism is to be an adequate theory of mind, we must have a theory of representation for neural 
networks that allows for individual differences in weighting and architecture while preserving sameness, or 
at least similarity, of content. In this paper we propose a procedure for measuring sameness of content of 
neural representations. We argue that the correct way to compare neural representations is through analysis 
of the distances between neural activations, and we present a method for doing so. We then use the 
technique to demonstrate empirically that different artificial neural networks trained by back-propagation 
on the same categorisation task, even with different representational encodings of the input patterns 
and different numbers of hidden units, reach states in which representations at the hidden units are 
similar. We discuss how this work provides a rebuttal to Fodor and Lepore’s critique of Paul Churchland’s 
state space semantics.

http://cseweb.ucsd.edu/~gary/pubs/
Laakso&Cottrell2000.pdf



–Nikolaus Kriegeskorte,Marieke Mur, and Peter Bandettini (2008)

“… In order to bridge these divides, we suggest abstracting from the activity patterns themselves 
and computing representational dissimilarity matrices (RDMs), which characterise the information 
carried by a given representation in a brain or model. Building on a rich psychological and 
mathematical literature on similarity analysis, we propose a new experimental and data-analytical 
framework called representational similarity analysis (RSA), in which multi-channel measures of 
neural activity are quantitatively related to each other and to computational theory and behaviour 
by comparing RDMs. We demonstrate RSA by relating representations of visual objects as 
measured with fMRI in early visual cortex and the fusiform face area to computational models 
spanning a wide range of complexities… ” 

https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2605405/

https://www.ncbi.nlm.nih.gov/pubmed/?term=Kriegeskorte%20N%5BAuthor%5D&cauthor=true&cauthor_uid=19104670
https://www.ncbi.nlm.nih.gov/pubmed/?term=Mur%20M%5BAuthor%5D&cauthor=true&cauthor_uid=19104670
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bandettini%20P%5BAuthor%5D&cauthor=true&cauthor_uid=19104670


Drawing Connections between  
Computational Models and Biological Models

Given a continues language input, i.e. text of a story:

- How different,  are the representations from different models and 
what can we learn from that…

- How similar are the representations obtained from the models and 
the activity patterns in human brain



Aligning representational spaces
Learn a Transformation function between the two spaces

- We need enough training data

- We need a proper distance metric between for the target representational space

- What does it mean when we can not learn the proper Transformation function?

Compute Representational similarity

- Similarity of similarities/Distances of distances

- We are interested in the organisation of the entities/concepts in the space rather 
than the actual activation values of the units

- We assume that we have a fair similarity/distance metric for each of the 
representational spaces



Representational Stability Analysis

How sensitive the representations are to a specific change in the input 
condition, e.g. Context Length:  

… witch in the family …
… But for my mother and father, oh no, it was Lily this and Lily that, they were proud of having a …
… I was the only one who saw her for what she was -- a freak …
… 
… How could you not be, my dratted sister being what she was …
… ”Knew! Of course we knew! …

ReSta(model, k) = RSS(model|c|=k, model|c|=k+1)
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Figure 2: Changes in RSS (Representational Similarity Score) by increasing context length.
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Figure 4: RSS across models

the depth of the layers and the level of abstraction
of their representations. We study this intuition
here empirically by analyzing the first and second
layer of the LSTM models, and the first and last
layer in BERT.

3.2 Brain Data

To obtain data on brain activations, we use the
Harry Potter brain dataset (Wehbe et al., 2014a).
This dataset consists of the fMRI scans of the
brains of people reading one chapter of the Harry
Potter book word by word. Hence, we have a text
input which is part of a story, and we also have
the brain images of 8 different human subjects
that correspond to different steps of processing
this text input. Having this data, we can feed the
same text input to our computational models and
then study the alignment between the embedding
spaces of the computational models and the human
brains. The details of collecting and preparing this

dataset1 are explained in the original paper (We-
hbe et al., 2014a).

The fMRI data contains activation values for ap-
proximately 40000 voxels per scan, each reflecting
the oxygen usage (the “BOLD response”) in ap-
proximately 3mm3 of brain tissue. To obtain the
brain representations, we flatten the 3D fMRI im-
ages into vectors thereby ignoring the spatial rela-
tionships between the voxels. We do this either for
the whole brain, or for specific regions separately.
In our analysis, we only include the voxels from
the top k regions that are most similar across dif-
ferent subjects given the same stimuli. We heuris-
tically set the value of k to 16.

The story chapter is split into four almost equal
length blocks, each reflecting approximately 12
minutes of measurements. Each block is presented
to the participant in one continuous trial, and ex-
perimental blocks are separated by pauses for the
subjects. Table 2 provides statistics for the stimuli.
The text of the chapter was shown to the subjects,
word by word, at a rate of 0.5s per word. The
brains of the subjects were scanned every 2.0s;
each brain scan is thus associated with a sequence
of 4 words. An important point to consider when
dealing with fMRI data is the hemodynamic re-
sponse delay (Buckner, 1998): from the time neu-
rons start firing, it takes 4 to 6 seconds until the
Bold response reaches its peak. This means that
from the time a stimulus is presented to a subject,
it takes approximately 5 seconds before we can ob-
serve its response in the fMRI scan of the brain.
The pre-processing steps applied to the brain data
is described in more detail in the supplementary
material.

4 Analyzing Neural Language Models

In this section, we present the results of ap-
plying ReStA, Representational Stability Analy-

1Available at http://www.cs.cmu.edu/ fmri/plosone/



Representational Stability Analysis
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will be different whenever different amounts of
prior context are available. Hence, in this paper,
we will interpret context-dependence as an imper-
fect but useful signature of deep linguistic process-
ing.

3 Models and Data

3.1 Neural Language Models

We study language models with different archi-
tectures trained with different objective functions
(see Table 1). As a word level embedding model,
we use GloVe (Pennington et al., 2014). We con-
sider a sentence as a bag of words and represent
it by averaging over the GloVe embeddings of its
words.

We employ two high performing LSTM based
language models: ELMO (Peters et al., 2018)
and GoogleLM (Jozefowicz et al., 2016). Both
of these models have two layers of LSTM; how-
ever, ELMO uses bidirectional LSTM layers,
whereas in the GoogleLM the LSTM layers are
uni-directional. From these models, we take the
internal states of each of the LSTM layers as two
different representation spaces.

In our comparisons, we also use BERT and
the Universal Sentence Encoder (UniSentEnc), as
Transformer based models. BERT is trained on
masked language modelling and next sentence
prediction tasks (Devlin et al., 2018) while the
Universal Sentence Encoder is trained on a differ-
ent objective than language modelling. The pa-
rameters of this model are optimized concerning
different language tasks so that it can better en-
code the meaning of complete sentences. These
two models do not have the recurrent inductive
bias of LSTM, and hence the representations they
learn can be completely different.

To study how and where the models integrate
information over time, we modify the amount of
context provided to the models to obtain the con-
textualized word representations. We do this at the
sentence level. Thus, for the context length of 0,
we only feed the target words to the models; For
context length 1 we feed all the previous words
in the current sentence to the models. For context
length i where i > 1, in addition to the current
sentence we feed all the words in the last i sen-
tences. The reason we do this at the sentence level
is to feed the model with independently meaning-
ful pieces of text.

From prior work, we expect a relation between

(a) GoogleLM

(b) ELMO

(c) BERT

Figure 1: RSS (Representational Similarity Score) between
different layers of each model given different context length
in terms of number of previous sentences over the story
words. In these plots, for example L1 c3 means represen-
tation from layer 1, when the context length is 3 sentences
including the current sentence. When c = 0, the model only
sees the current words and when c = 1 the model sees cur-
rent sentence up to the target word. Here darker means more
similar.
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will be different whenever different amounts of
prior context are available. Hence, in this paper,
we will interpret context-dependence as an imper-
fect but useful signature of deep linguistic process-
ing.

3 Models and Data

3.1 Neural Language Models

We study language models with different archi-
tectures trained with different objective functions
(see Table 1). As a word level embedding model,
we use GloVe (Pennington et al., 2014). We con-
sider a sentence as a bag of words and represent
it by averaging over the GloVe embeddings of its
words.

We employ two high performing LSTM based
language models: ELMO (Peters et al., 2018)
and GoogleLM (Jozefowicz et al., 2016). Both
of these models have two layers of LSTM; how-
ever, ELMO uses bidirectional LSTM layers,
whereas in the GoogleLM the LSTM layers are
uni-directional. From these models, we take the
internal states of each of the LSTM layers as two
different representation spaces.

In our comparisons, we also use BERT and
the Universal Sentence Encoder (UniSentEnc), as
Transformer based models. BERT is trained on
masked language modelling and next sentence
prediction tasks (Devlin et al., 2018) while the
Universal Sentence Encoder is trained on a differ-
ent objective than language modelling. The pa-
rameters of this model are optimized concerning
different language tasks so that it can better en-
code the meaning of complete sentences. These
two models do not have the recurrent inductive
bias of LSTM, and hence the representations they
learn can be completely different.

To study how and where the models integrate
information over time, we modify the amount of
context provided to the models to obtain the con-
textualized word representations. We do this at the
sentence level. Thus, for the context length of 0,
we only feed the target words to the models; For
context length 1 we feed all the previous words
in the current sentence to the models. For context
length i where i > 1, in addition to the current
sentence we feed all the words in the last i sen-
tences. The reason we do this at the sentence level
is to feed the model with independently meaning-
ful pieces of text.

From prior work, we expect a relation between

(a) GoogleLM

(b) ELMO

(c) BERT

Figure 1: RSS (Representational Similarity Score) between
different layers of each model given different context length
in terms of number of previous sentences over the story
words. In these plots, for example L1 c3 means represen-
tation from layer 1, when the context length is 3 sentences
including the current sentence. When c = 0, the model only
sees the current words and when c = 1 the model sees cur-
rent sentence up to the target word. Here darker means more
similar.
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will be different whenever different amounts of
prior context are available. Hence, in this paper,
we will interpret context-dependence as an imper-
fect but useful signature of deep linguistic process-
ing.

3 Models and Data

3.1 Neural Language Models

We study language models with different archi-
tectures trained with different objective functions
(see Table 1). As a word level embedding model,
we use GloVe (Pennington et al., 2014). We con-
sider a sentence as a bag of words and represent
it by averaging over the GloVe embeddings of its
words.

We employ two high performing LSTM based
language models: ELMO (Peters et al., 2018)
and GoogleLM (Jozefowicz et al., 2016). Both
of these models have two layers of LSTM; how-
ever, ELMO uses bidirectional LSTM layers,
whereas in the GoogleLM the LSTM layers are
uni-directional. From these models, we take the
internal states of each of the LSTM layers as two
different representation spaces.

In our comparisons, we also use BERT and
the Universal Sentence Encoder (UniSentEnc), as
Transformer based models. BERT is trained on
masked language modelling and next sentence
prediction tasks (Devlin et al., 2018) while the
Universal Sentence Encoder is trained on a differ-
ent objective than language modelling. The pa-
rameters of this model are optimized concerning
different language tasks so that it can better en-
code the meaning of complete sentences. These
two models do not have the recurrent inductive
bias of LSTM, and hence the representations they
learn can be completely different.

To study how and where the models integrate
information over time, we modify the amount of
context provided to the models to obtain the con-
textualized word representations. We do this at the
sentence level. Thus, for the context length of 0,
we only feed the target words to the models; For
context length 1 we feed all the previous words
in the current sentence to the models. For context
length i where i > 1, in addition to the current
sentence we feed all the words in the last i sen-
tences. The reason we do this at the sentence level
is to feed the model with independently meaning-
ful pieces of text.

From prior work, we expect a relation between

(a) GoogleLM

(b) ELMO

(c) BERT

Figure 1: RSS (Representational Similarity Score) between
different layers of each model given different context length
in terms of number of previous sentences over the story
words. In these plots, for example L1 c3 means represen-
tation from layer 1, when the context length is 3 sentences
including the current sentence. When c = 0, the model only
sees the current words and when c = 1 the model sees cur-
rent sentence up to the target word. Here darker means more
similar.



Representational Similarity between Different Models
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Figure 2: Changes in RSS (Representational Similarity Score) by increasing context length.
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Figure 4: RSS across models

the depth of the layers and the level of abstraction
of their representations. We study this intuition
here empirically by analyzing the first and second
layer of the LSTM models, and the first and last
layer in BERT.

3.2 Brain Data

To obtain data on brain activations, we use the
Harry Potter brain dataset (Wehbe et al., 2014a).
This dataset consists of the fMRI scans of the
brains of people reading one chapter of the Harry
Potter book word by word. Hence, we have a text
input which is part of a story, and we also have
the brain images of 8 different human subjects
that correspond to different steps of processing
this text input. Having this data, we can feed the
same text input to our computational models and
then study the alignment between the embedding
spaces of the computational models and the human
brains. The details of collecting and preparing this

dataset1 are explained in the original paper (We-
hbe et al., 2014a).

The fMRI data contains activation values for ap-
proximately 40000 voxels per scan, each reflecting
the oxygen usage (the “BOLD response”) in ap-
proximately 3mm3 of brain tissue. To obtain the
brain representations, we flatten the 3D fMRI im-
ages into vectors thereby ignoring the spatial rela-
tionships between the voxels. We do this either for
the whole brain, or for specific regions separately.
In our analysis, we only include the voxels from
the top k regions that are most similar across dif-
ferent subjects given the same stimuli. We heuris-
tically set the value of k to 16.

The story chapter is split into four almost equal
length blocks, each reflecting approximately 12
minutes of measurements. Each block is presented
to the participant in one continuous trial, and ex-
perimental blocks are separated by pauses for the
subjects. Table 2 provides statistics for the stimuli.
The text of the chapter was shown to the subjects,
word by word, at a rate of 0.5s per word. The
brains of the subjects were scanned every 2.0s;
each brain scan is thus associated with a sequence
of 4 words. An important point to consider when
dealing with fMRI data is the hemodynamic re-
sponse delay (Buckner, 1998): from the time neu-
rons start firing, it takes 4 to 6 seconds until the
Bold response reaches its peak. This means that
from the time a stimulus is presented to a subject,
it takes approximately 5 seconds before we can ob-
serve its response in the fMRI scan of the brain.
The pre-processing steps applied to the brain data
is described in more detail in the supplementary
material.

4 Analyzing Neural Language Models

In this section, we present the results of ap-
plying ReStA, Representational Stability Analy-

1Available at http://www.cs.cmu.edu/ fmri/plosone/



Representational Stability Analysis (evaluation on WiC)

How sensitive the representations are to a specific change in the input 
condition, e.g. Context:  

He is about average in height .
The snowfall this month is below average .

In the old days a policeman walked a beat and knew all his people by 
name .
A beat of the heart .

ReSt(model, (C1, C2)) = RSS(modelc=C1
, modelc=C2

)
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Representational Similarity between Models and Brains
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Figure 5: Alignment of the words in the story and the brain vectors
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Figure 6: Representational similarity of the models and
brains averaged over all subjects at different time delays af-
ter the human subjects have read the target words, when the
context provided to the models is only the current sentence.
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Figure 7: Similarity of the representations from different
layers of different models, given different amount of context
with brain representations, averaged over all subjects. Note
that the average RSS of brains of different human subjects is
about 0.55

sis, to three different language encoding models,
GoogleLM, ELMO and BERT, to find out what
kind of information is captured in the representa-
tions they have learned. Next, we apply standard
RSA to, first, investigate the relations between dif-
ferent components of the language encoding mod-
els, and second to study the alignment of these
components with the activity patterns in the hu-
man brain.

We made the code that reproduces all the exper-
iments publicly available at {anonymized}
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Figure 8: Similarity of the computational representations
with brain representations at different segments of the story.

4.1 Representational Stability Analysis

In Figure 1 the representations of the different lay-
ers given different context lengths are compared
for GoogleLM, ELMO and BERT.

Effect of depth For the LSTM based models,
we observe a high degree of similarity between
the two layers (⇠ 0.75 and ⇠ 0.80) compared
to BERT (⇠ 0.35). Part of this can be explained
by the higher number of layers in BERT. Across
the first and last layers of all these three models,
we notice that the two layers are the most similar
when provided with the same amount of context.

Context sensitivity Next, we look into the sen-
sitivity of different layers of each model to context
length. In Figures 2a and 1, we see that for both
LSTM based models, GoogleLM and ELMO, the
first layer, L0, is less sensitive to the changes in the
context length compared to the second layer, i.e.
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Figure 2: Changes in RSS (Representational Similarity Score) by increasing context length.
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Figure 4: RSS across models

the depth of the layers and the level of abstraction
of their representations. We study this intuition
here empirically by analyzing the first and second
layer of the LSTM models, and the first and last
layer in BERT.

3.2 Brain Data

To obtain data on brain activations, we use the
Harry Potter brain dataset (Wehbe et al., 2014a).
This dataset consists of the fMRI scans of the
brains of people reading one chapter of the Harry
Potter book word by word. Hence, we have a text
input which is part of a story, and we also have
the brain images of 8 different human subjects
that correspond to different steps of processing
this text input. Having this data, we can feed the
same text input to our computational models and
then study the alignment between the embedding
spaces of the computational models and the human
brains. The details of collecting and preparing this

dataset1 are explained in the original paper (We-
hbe et al., 2014a).

The fMRI data contains activation values for ap-
proximately 40000 voxels per scan, each reflecting
the oxygen usage (the “BOLD response”) in ap-
proximately 3mm3 of brain tissue. To obtain the
brain representations, we flatten the 3D fMRI im-
ages into vectors thereby ignoring the spatial rela-
tionships between the voxels. We do this either for
the whole brain, or for specific regions separately.
In our analysis, we only include the voxels from
the top k regions that are most similar across dif-
ferent subjects given the same stimuli. We heuris-
tically set the value of k to 16.

The story chapter is split into four almost equal
length blocks, each reflecting approximately 12
minutes of measurements. Each block is presented
to the participant in one continuous trial, and ex-
perimental blocks are separated by pauses for the
subjects. Table 2 provides statistics for the stimuli.
The text of the chapter was shown to the subjects,
word by word, at a rate of 0.5s per word. The
brains of the subjects were scanned every 2.0s;
each brain scan is thus associated with a sequence
of 4 words. An important point to consider when
dealing with fMRI data is the hemodynamic re-
sponse delay (Buckner, 1998): from the time neu-
rons start firing, it takes 4 to 6 seconds until the
Bold response reaches its peak. This means that
from the time a stimulus is presented to a subject,
it takes approximately 5 seconds before we can ob-
serve its response in the fMRI scan of the brain.
The pre-processing steps applied to the brain data
is described in more detail in the supplementary
material.

4 Analyzing Neural Language Models

In this section, we present the results of ap-
plying ReStA, Representational Stability Analy-

1Available at http://www.cs.cmu.edu/ fmri/plosone/
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Figure 5: Alignment of the words in the story and the brain vectors
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Figure 6: Representational similarity of the models and
brains averaged over all subjects at different time delays af-
ter the human subjects have read the target words, when the
context provided to the models is only the current sentence.

0 1 2 3 4 5 6 7

0.2

0.3

0.4

Context Length

GoogleLM(L0) GoogleLM(L1) Elmo(L0) Elmo(L1)

Bert(L0) Bert(L11) UniSentEnc GloVe

Figure 7: Similarity of the representations from different
layers of different models, given different amount of context
with brain representations, averaged over all subjects. Note
that the average RSS of brains of different human subjects is
about 0.55

sis, to three different language encoding models,
GoogleLM, ELMO and BERT, to find out what
kind of information is captured in the representa-
tions they have learned. Next, we apply standard
RSA to, first, investigate the relations between dif-
ferent components of the language encoding mod-
els, and second to study the alignment of these
components with the activity patterns in the hu-
man brain.

We made the code that reproduces all the exper-
iments publicly available at {anonymized}
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(a) Complete sentences
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(b) Mentions of story character

Figure 8: Similarity of the computational representations
with brain representations at different segments of the story.

4.1 Representational Stability Analysis

In Figure 1 the representations of the different lay-
ers given different context lengths are compared
for GoogleLM, ELMO and BERT.

Effect of depth For the LSTM based models,
we observe a high degree of similarity between
the two layers (⇠ 0.75 and ⇠ 0.80) compared
to BERT (⇠ 0.35). Part of this can be explained
by the higher number of layers in BERT. Across
the first and last layers of all these three models,
we notice that the two layers are the most similar
when provided with the same amount of context.

Context sensitivity Next, we look into the sen-
sitivity of different layers of each model to context
length. In Figures 2a and 1, we see that for both
LSTM based models, GoogleLM and ELMO, the
first layer, L0, is less sensitive to the changes in the
context length compared to the second layer, i.e.
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the representations are not any more affected by
increasing the context length after 3 sentences. A
hierarchical encoding mechanism, where the first
layer is responsible for encoding the local context
and the second layer is encoding more global in-
formation, can justify these results.

The sensitivity to the context length is more
significant in the Transformer based models com-
pared to LSTM based models. In these models,
the difference in the representations at different
context lengths does not fade away as the context
length increases but the rate of the changes be-
comes constant. In BERT, no matter how long the
context is, adding more context leads to a different
representation. In addition, in this model, the rep-
resentations from the first layer are more context
dependent. Since in self-attention layers, there is
a direct connection between the representations at
different positions, the higher degree of sensitiv-
ity to context length is not surprising. This is ev-
idence that, for computing the representations of
each position in the input, the representations from
all positions, no matter how far they are, are in fact
taken into account. The reason why the last layer
of BERT is less sensitive to context could be that
in higher layers, the representations correspond to
more abstract meanings, and the representational
space becomes denser than the lower layers.

4.2 RSA across Models

In the second step, we study whether the computa-
tional models we employ have learned inherently
different representational spaces. According to
representational similarity scores, among the mod-
els that we study, shown in Figure 4, UniSentEnc
seems to learn very different representations from
ELMO, GoogleLM and BERT. While BERT and
UniSentEnc are both Transformer based models,
the representational space of BERT is more similar
to the representations from ELMO and GoogleLM
that are LSTM based models. This can be due
to the fact that ELMO, GoogleLM and BERT are
trained with language modelling objectives, while
UniSentEnc is trained on skip-thought and clas-
sification tasks and this could indicate the impor-
tance of the effect of the training objective on the
representational spaces.

(a) GoogleLM (L0)

(b) GoogleLM (L1)

(c) ELMO (L0)

(d) ELMO (L1)

(e) UniSentEnc

(f) BERT (L0)

(g) BERT (L11)

(h) GloVe

Figure 9: RSS of representations learned at different layers
of different models with representations at different regions
of Subject4’s brain.

5 Analyzing Representational Similarity

between Models and Brains

Figure 7 shows the similarity of different com-
putational representation spaces with brain repre-
sentations, with respect to different amounts of
context provided to the models, averaged over all
human subjects. Due to the hemodynamic re-
sponse delay, we expect to see the peak in the
similarities after about 4s delay. As we can
see in Figure 6, the highest RSS for all models
is at Delay = 4s, the ranking of the models
based on their similarities with brain representa-
tions is the same for all amounts of delay. Inter-
estingly, the performances of these models on the
NLP tasks are not correlated with their similarity
with the brain representations (but note the over-
all low correlations). The representations learned
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the representations are not any more affected by
increasing the context length after 3 sentences. A
hierarchical encoding mechanism, where the first
layer is responsible for encoding the local context
and the second layer is encoding more global in-
formation, can justify these results.

The sensitivity to the context length is more
significant in the Transformer based models com-
pared to LSTM based models. In these models,
the difference in the representations at different
context lengths does not fade away as the context
length increases but the rate of the changes be-
comes constant. In BERT, no matter how long the
context is, adding more context leads to a different
representation. In addition, in this model, the rep-
resentations from the first layer are more context
dependent. Since in self-attention layers, there is
a direct connection between the representations at
different positions, the higher degree of sensitiv-
ity to context length is not surprising. This is ev-
idence that, for computing the representations of
each position in the input, the representations from
all positions, no matter how far they are, are in fact
taken into account. The reason why the last layer
of BERT is less sensitive to context could be that
in higher layers, the representations correspond to
more abstract meanings, and the representational
space becomes denser than the lower layers.

4.2 RSA across Models

In the second step, we study whether the computa-
tional models we employ have learned inherently
different representational spaces. According to
representational similarity scores, among the mod-
els that we study, shown in Figure 4, UniSentEnc
seems to learn very different representations from
ELMO, GoogleLM and BERT. While BERT and
UniSentEnc are both Transformer based models,
the representational space of BERT is more similar
to the representations from ELMO and GoogleLM
that are LSTM based models. This can be due
to the fact that ELMO, GoogleLM and BERT are
trained with language modelling objectives, while
UniSentEnc is trained on skip-thought and clas-
sification tasks and this could indicate the impor-
tance of the effect of the training objective on the
representational spaces.
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(b) GoogleLM (L1)
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(f) BERT (L0)
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Figure 9: RSS of representations learned at different layers
of different models with representations at different regions
of Subject4’s brain.

5 Analyzing Representational Similarity

between Models and Brains

Figure 7 shows the similarity of different com-
putational representation spaces with brain repre-
sentations, with respect to different amounts of
context provided to the models, averaged over all
human subjects. Due to the hemodynamic re-
sponse delay, we expect to see the peak in the
similarities after about 4s delay. As we can
see in Figure 6, the highest RSS for all models
is at Delay = 4s, the ranking of the models
based on their similarities with brain representa-
tions is the same for all amounts of delay. Inter-
estingly, the performances of these models on the
NLP tasks are not correlated with their similarity
with the brain representations (but note the over-
all low correlations). The representations learned


